Data Spectroscopy: Eigenspace of Convolution Operators and Clustering
نویسندگان
چکیده
This paper focuses on obtaining clustering information in a distribution when iid data are given. First, we develop theoretical results for understanding and using clustering information contained in the eigenvectors of data adjacency matrices based on a radial kernel function (with a sufficiently fast tail decay). We provide population analyses to give insights into which eigenvectors should be used and when the clustering information for the distribution can be recovered from the data. In particular, we learned that top eigenvectors do not contain all the clustering information. Second, we use heuristics from these analyses to design the Data Spectroscopic clustering (DaSpec) algorithm that uses properly selected top eigenvectors, determines the number of clusters, gives data labels, and provides a classification rule for future data, all based on only one eigen decomposition. Our findings not only extend and go beyond the intuitions underlying existing spectral techniques (e.g. spectral clustering and Kernel Principal Components Analysis), but also provide insights about their usability and modes of failure. Simulation studies and experiments on real world data are conducted to show the promise of our proposed data spectroscopy clustering algorithm relative to k-means and one spectral method. In particular, DaSpec seems to be able to handle unbalanced groups and recover clusters of different shapes better than competing methods.
منابع مشابه
Data Spectroscopy: Eigenspaces of Convolution Operators and Clustering
This paper focuses on obtaining clustering information about a distribution from its i.i.d. samples. We develop theoretical results to understand and use clustering information contained in the eigenvectors of data adjacency matrices based on a radial kernel function with a sufficiently fast tail decay. In particular, we provide population analyses to gain insights into which eigenvectors shoul...
متن کاملSubordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملImproved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملHighly Sparse Reductions to Kernel Spectral Clustering
Kernel spectral clustering is a model-based spectral clustering method formulated in a primal-dual framework. It has a powerful out-of-sample extension property and a model selection procedure based on the balanced line fit criterion. This paper is an improvement of a previous work which sparsified the kernel spectral clustering method using the line structure of the data projections in the eig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008